MISCELLANEOUS FIELD STUDIES MAP MF-773-G FOLIO OF THE McCARTHY QUADRANGLE, ALASKA

EXPLANATION FOR GENERALIZED GEOLOGIC MAP (GEOLOGY GENERALIZED BY MacKEVETT, 1976)

CORRELATION OF MAP UNITS SURFICIAL DEPOSITS NORTH OF TOTSCHUNDA FAULT SOUTH OF BORDER RANGES FAULT BETWEEN BORDER RANGES FAULT AND TOTSCHUNDA FAULT SYSTEM SEDIMENTARY, VOLCANIC, **VOLCANIC ROCKS** UNCONFORMITY UNCONFORMITY Kkg - CRETACEOUS

DESCRIPTION OF MAP UNITS

SURFICIAL DEPOSITS UNCONSOLIDATED SEDIMENTARY DEPOSITS (Quaternary) SOUTH OF BORDER RANGES FAULT VALDEZ GROUP (Cretaceous and Jurassic?) INTRUSIVE ROCKS (Eocene?) Typically, foliated granodiorite and tonalite

BETWEEN BORDER RANGES FAULT AND TOTSCHUNDA FAULT SYSTEM SEDIMENTARY, VOLCANIC, AND METAMORPHIC ROCKS WRANGELL LAVA (Quaternary and Tertiary) Chiefly subaerial andesitic lava flows and tephra; includes local subaerial sedimentary rocks of the Frederika Formation

MARINE SEDIMENTARY ROCKS (Upper and Lower Cretaceous) Includes MacColl Ridge, Chititu, Moonshine Creek, Schulze, and Kennicott Formations, and unnamed Lower Cretaceous rocks MARINE SEDIMENTARY ROCKS (Jurassic and Triassic) Includes Root Glacier, Nizina Mountain, Lubbe Creek, and McCarthy Formations, Kotsina Conglomerate, and Nizina and Chitistone Limestones

NIKOLAI GREENSTONE (Upper and (or) Middle Triassic) Mainly subaerial tholeiltic basalt; includes subordinate SKOLAI GROUP (Permian and Pennsylvanian) As mapped includes a few scattered remnants of Middle Triassic sedimentary rocks in northeastern part of quadrangle.

KASKAWULSH GROUP OF KINDLE (1953) (Devonian?) FELSIC HYPABYSSAL ROCKS (Pliocene) Mainly porphyritic dacite GRANODIORITE (Pliocene) Unfoliated granodiorite with local mafic border facies CHITINA VALLEY BATHOLITH (Jurassic) Mainly foliated quartz monzodiorite, granodiorite, and tonalite

MONZONITIC-GRANITIC COMPLEX (Pennsylvanian) Mainly nonfoliated quartz monzonite and granite, local mafic GABBRO AND ORTHOGNEISS (Pennsylvanian)

MEDIAN = 10 ppm

Calculation based on

analysis of 1453 samples

STANDARD DEVIATION = 10

GEOMETRIC DEVIATION = 1.5 | Calculation based on analysis

limit of determination (10).

with concentrations of Pb in

the range N(10) through 200 ppm

ARITHMETIC MEAN = 15 ppm

GEOMETRIC MEAN = 14 ppm

of 1128 samples with concentrations

of Pb in the range 10 through 200 ppm.

Qualified N and L values not included. N, not detected; L, detected but below

INTERIOR-GEOLOGICAL SURVEY, RESTON, VIRGINIA-1976

Box 25286, Federal Center, Denver, CO 80225

For sale by Branch of Distribution, U.S. Geological Survey,

NORTH OF TOTSCHUNDA FAULT SYSTEM SEDIMENTARY AND VOLCANIC ROCKS WRANGELL LAVA See above

SKOLAI GROUP See above INTRUSIVE ROCKS FELSIC HYPABYSSAL ROCKS See above

KLEIN CREEK PLUTON (Cretaceous) Chiefly granodiorite Contact; dotted where concealed ... High-angle fault; dotted where concealed

Thrust fault; sawteeth on upper plate. Dotted where concealed NOTE: Areas without letter symbols are glaciers and snowfields

N(IO) L(IO) IO 15 20 30 50 70 100 150 200 I FAD. IN PARTS PER MILLION

Histogram showing frequency distribution,

McCarthy quadrangle, Alaska.

analytical range, and map symbols for lead in stream sediments and glacial debris,

METAMORPHOSED SKOLAI GROUP (Permian and Pennsylvanian) Includes a few small outcrops of serpentinized ultramafic rocks near Border Ranges fault CHISANA FORMATION (Lower Cretaceous) Marine and subaerial volcaniclastic and volcanic rocks NUTZOTIN MOUNTAINS SEQUENCE (Lower Cretaceous and Upper Jurassic) NIKOLAI GREENSTONE See above

Stream sediment samples collected in the area south of the Chitina River show little evidence to suggest strong or extensive lead mineralization; only a few stream sediment samples contain anomalous concentrations of lead. Some samples appear to be associated with an extension of the Jurassic Chitina Valley batholith intrusion into metamorphosed rocks of the Skolai Group, in the relative vicinity of the O'Hara prospect (T. 6 S., R. 9 E.), and a few appear related to an intrusion of Tertiary granodiorite and tonalite into the Jurassic(?) and Cretaceous Valdez Group in juxtaposition with the Border Ranges fault, which traverses the southwest corner of the quadrangle. The general area probably does not contain major lead deposits; however, the occurrence of scattered gold, silver, arsenic, and mercury anomalies in this area suggest more detailed geochemical studies should be conducted. Several highly anomalous lead values were

some minor occurrences of silver in panned con-

centrates, and a few anomalous amounts of

arsenic in stream sediment samples occur in this

same general area. The evidence for the

occurrence of a major porphyry mineral system in

the area does not appear conclusive from lead

analyses alone. The Klein Creek plutons require

more detailed investigation, especially in view

of their association with porphyry copper depos-

its in the Nabesna quadrangle (Richter and

samples derived from streams draining a

monzonitic-granitic complex of Pennsylvanian age

associated with rocks of the Kaskawulsh and

Skolai Groups in the southeastern part of the

quadrangle (T. 9 S., R. 21 E.). These two

sample sites are in the general vicinity of the

Harrais prospect (T. 10 S., R. 21 E.) where

massive and disseminated copper, lead, and zinc

sulfides occur. Anomalous concentrations of

gold, arsenic, mercury, and copper have also

rock from this same locality. Outcrops covering

several square kilometers show evidence of

strong hydrothermal alteration and positive

aeromagnetic anomalies occur locally (Case and

MacKevett, 1976). The intrusive complex also

contains several molybdenum anomalies and two

small tin anomalies. The presence of anomalous

amounts of all these elements suggests that this

area might contain undiscovered porphyry-type

copper and molybdenum deposits related to the

intrusive complex, in addition to telethermal

were detected in stream sediments from the Dan

Creek, Nikolai Butte, Williams Peak, Pyramid

Peak, Andrus Peak, and Mount Holmes area (T. 6

S., R. 16 E.) located in the south-central part

of the quadrangle. The anomalies are considered

to be extemely significant. An intrusion of

Tertiary granodiorite and tonalite, which forms

small, outcropping plutons, is inferred to under-

lie much of the area. These intrusives are

probably related to the Tertiary intrusive

complex exposed in the University Range (T. 5

S., R. 18 E.) to the northeast. In addition to

lead, anomalous concentrations of copper,

silver, arsenic, mercury, antimony, gold, and

molybdenum detected in samples of rock and

stream sediment suggest that relatively intense

mineralization probably occurs in this area.

Strong positive magnetic anomalies are present (Case and MacKevett, 1976) and hydrothermally

altered rocks are visible in outcrops. The area

has been extensively placer mined for gold and

is known to contain veins of gold-arsenic-

antimony, and gold-copper-molybdenum. The

associations of these elements strongly suggest

the possibility of concealed porphyry-type

copper, molybdenum, or other types of deposits,

as lead is representative of peripheral haloing.

sites, as well as statistical and analytical

data, obtained 1974-1976 for lead in stream

sediments and glacial moraine debris collected

in the McCarthy quadrangle is available,

together with details of sample collection,

preparation, analysis, data storage and retriev-

al, in U.S. Geological Survey Open-File Report

76-824 (O'Leary and others, 1976) and on a

computer tape (VanTrump and others, 1977).

A complete set of coordinates for sample

Highly anomalous and extensive lead values

been detected in samples of stream sediment and

Strong lead anomalies were detected in two

The accompanying map shows the distribution and relative abundance of lead in stream sediment and glacial moraine debris samples collected. Geochemical analyses have been grouped and are represented by symbols on a base detected in stream sediments collected adjacent map, which includes topography and generalized to the Totschunda fault system (T. 3 S., R. 21 geology. The range of analytical values and the E.), and to the northeast, in the White River symbol that represents it are shown on the area; these samples were collected and analyzed histogram. Graphical representation of analytby the Alaska Division of Mines and Geology and ical values on the map permits easy observation a more detailed interpretation is made by of any large variation resulting from separate Knaebel (1970). It is possible that some of the or duplicate samples collected at the same or anomalies indicate mineralization associated with the Cretaceous Klein Creek plutons of In general, the stream sediment samples mainly granodioritic composition. The plutons were obtained from active streams as close to occur in the extreme northeast corner of the the channel center as was practical however, in quadrangle, and south of the White River on the north flank of Mount Sulzer (T. 3 S., R. 21 E.). Both positive and negative aeromagnetic anomalies (Case and MacKevett, 1976), occur in this area but support for major mineralization from associated geochemical anomalies is not strong. Strong copper anomalies in stream sediments,

some cases, only dry stream beds could be sampled. The glacial debris was collected from medial and lateral moraines on active glaciers. Samples of both stream sediments and glacial moraine debris were air dried and sieved to obtain material that would pass through a 180 micron opening sieve for analysis. When a fine sediment sample could not be obtained, a representative fraction of the smallest available rock fragments in the streams or on the glacial moraines was collected and ground so that it would pass through the same sieve opening for analysis. The lead analyses may help to locate potential occurrences of concealed mineral deposits, particularly large buried porphyry copper and molybdenum centers, telethermal lead and zinc, or stratiform mineral deposits. The arithmetic and geometric mean values

A geochemical survey was conducted in the

McCarthy quadrangle, Alaska, to identify areas

containing anomalous concentrations of various

metallic and nometallic elements. This study

incorporates the results of analyses for lead

from 1,453 stream sediment and glacial moraine

debris samples collected in the quadrangle, and

analyzed by the U.S. Geological Survey between

1961 and 1976 using semiquantitative emission

spectrophotometry. In addition, the study

includes a large part of the analytical results

of stream sediment samples from the White River

area, located in the northeastern part of the

quadrangle, which were collected and analyzed by

the Alaskan Division of Mines and Geology

(Knaebel, 1970).

nearby localities.

of lead in stream sediments and glacial debris from the McCarthy quadrangle are 15 and 14 ppm, respectively. Based on an evaluation of the statistical data given in the accompanying histogram, lead values ranging from N(10) to 20 ppm are classified as background values. Those values between 20 and 30 ppm are classified as threshold to weakly anomalous, and values greater than 30 ppm lead are considered to be significantly anomalous.

A geochemical interpretation of the disstream sediment and glacial moraine debris collected in the McCarthy quadrangle is not complicated or unduly influenced by metals derived from the Middle and (or) Upper Triassic Nikolai Greenstone as in the case of some other elements. The greenstone in the McCarthy quadrangle has a regional average value of 10 ppm or less lead and does not seem to have any affinity with the Kennecott-type copper deposits. An initial study of the geographical distribution of lead anomalies suggests that most of the lead is related to occurrences of marble in the Devonian(?) Kashawulsh, and Pennsylvanian and Permian Skolai Groups associated with Pennsylvanian monzonitic-granitic complexes, or with Cretaceous marine sedimentary rocks associated with Tertiary felsic hypabyssal and granodioritic intrusive rocks. Statistically significant positive correlation coefficients occur between lead and the following elements: barium, strontium, zinc, and mercury. These high coefficients suggest sulfide ore association. The positive correlation of lead with boron and beryllium is difficult to explain but may be the result of felsic intrusions into marine sediments. The lack of correlation of lead with many other elements may be indicative of relative elemental mobilities in a weathering environment. This lack of correlation may also

result from metal contamination from the Nikolai Because erratic, biased, and in many cases widely separated sample localities were used in this project, undue emphasis may be placed on anomalous lead values occurring in only one or two samples in a given area. In all cases, geochemical interpretation has been made utilizing associated elements in combination with geological, structural, and geophysical data. More detailed geological, analytical, and statistical data for geochemical studies of specific areas in the McCarthy quadrangle can be found in reports by MacKevett and Smith (1968), Winkler and MacKevett (1970), Knaebel (1970), and Winkler, MacKevett, and Smith (1971). In addition to being a mineable commodity of considerable economic value, lead is an important pathfinder element that can be used in the search for porphyry, telethermal, and stratiform-type deposits. Lead often forms halos around zoned porphyry copper deposits. The distributions of gold, molybdenum, silver, and arsenic in rocks, together with the distributions of copper, gold, lead, arsenic, and mercury in stream sediments and glacial debris, may reveal zoning patterns that are related to undiscovered mineral deposits.

free of charge from the U.S. Geological Survey,

Reston, Va. 22092.

REFERENCES

reconnaissance of the White River area, southcentral Alaska: Alaska Div. Mines and Geology, Geochem. Rept. 21, 60 p. Case, J. E., and MacKevett, E. M., Jr., 1976, Aeromagnetic map and geologic interpretation of aeromagnetic map, McCarthy quadrangle, Alaska: U.S. Geol. Survey Misc. Field Studies Map MF-


MacKevett, E. M., Jr., and Smith, J. G., 1968, Distribution of gold, copper, and some other metals in the McCarthy, B-4 and B-5 quadrangles, Alaska: U.S. Geol. Survey Circ. 604, 25 p. Moffit, F. H., and Mertie, J. B., Jr., 1923, The Kotsina-Kuskulana district, Alaska: U.S. Geol.

Survey Bull. 745, 149 p. O'Leary, R. M., McDanal, S. K., Day, G. W., McDougal, C. M., and Robinson, Keith, 1976, Spectrographic and chemical analyses of geochemical samples Geol. Survey Open-File Rept. 76-824, 806 p. Available only at USGS libraries in Reston, Va., Denver, Co., and Menlo Park, Ca., and USGS Public Inquiries Office, Anchorage, Ak.

Knaebel, Jeff, 1970, Geochemical survey and geological Richter, D. H., Albert, N. R. D., Barnes, D. F., A., 1975, The Alaskan mineral resource assessment program; background information to accompany folio of geologic and mineral resource maps of the Nabesna quadrangle, Alaska: U.S. Geol. Survey Circ. 718, 11 p. VanTrump, George, Robinson, Keith, O'Leary, R. M., Day, G. W., and McDougal, C. M., 1977, Spectrographic and chemical analyses of geochemical samples from the McCarthy quadrangle, Alaska:

Tech. Inf. Service, Springfield, Va. 22161, in Winkler, G. R., and MacKevett, E. M., Jr., 1970, Analyses of stream sediment samples from the McCarthy C-8 quadrangle, southern Wrangell Mountains, Alaska: U.S. Geol. Survey Open-file report, 45 p. from the McCarthy quadrangle, Alaska: U.S. Winkler, G. R., MacKevett, E. M., Jr., and Smith, J. G., 1971, Geochemical reconnaissance of the McCarthy B-6 quadrangle, Alaska: U.S. Geol Survey Open-file report, 8 p.

Available only from U.S. Dept. Commerce Natl.

Base from U.S. Geological Survey, 1965 Geology generalized by MacKevett, 1976

CONTOUR INTERVAL 200 FEET

DATUM IS MEAN SEA LEVEL

1960 MAGNETIC DECLINATION AT SOUTH EDGE OF SHEET VARIES FROM 28°30' TO 29° EAST

Table showing linear correlation coefficients between logarithmic values of the concentration of selected elements versus lead, McCarthy quadrangle, Alaska [Leaders(---)indicate insufficient data.]

Analytical method	Analytical methodanalyses																Atomic absorption and colorimetric											
Element	Fe	Mg	Ca	Ti	Mn	Ag	В	Ba	Be	Со	Cr	Cu	Мо	Nb	Ni	Pb	Sc	Sr	V	Υ	Zn	Zr	Au	Cu	Pb	Zn	Hg	As
Correlation Coefficient(XIOC)	4	-20	-30	-6	0	14	26	26	18	-9	-16	4	17	-9	-1		-16	39	-5	2	26	6	-8	-2	37	30	28	3
Number of pairs	1128	1128	1111	1103	1128	39	938	1126	440	1124	1112	1127	670	753	1127		1125	51	1127	1124	655	1124	33	936	917	937	233	142

Au. Cu. Pb. and Zn by atomic absorption analysis Hg by flameless atomic absorption analysis As by colorimetric analysis

DISTRIBUTION AND ABUNDANCE OF LEAD IN STREAM SEDIMENTS AND MORAINE DEBRIS, McCARTHY QUADRANGLE, ALASKA Keith Robinson, C. M. McDougal, G. W. Day, and Theodore Billings